Học TậpLớp 6

Toán 6 Bài 4: Xác suất thực nghiệm trong một số trò chơi và thí nghiệm đơn giản Cánh diều

Giải Toán lớp 6 Bài 4: Xác suất thực nghiệm trong một số trò chơi và thí nghiệm đơn giản Cánh diều là tài liệu vô cùng hữu ích, giúp các em học sinh lớp 6 có thêm nhiều tư liệu tham khảo, đối chiếu lời giải hay, chính xác.

Tài liệu được biên soạn chi tiết, chính xác và đầy đủ các bài tập trong sách giáo khoa Cánh diều trang 19, 20 giúp các em xem gợi ý giải các bài tập của bài 4: Xác suất thực nghiệm trong một số trò chơi và thí nghiệm đơn giản. Vậy sau đây là nội dung chi tiết tài liệu, mời các bạn cùng theo dõi tại đây.

Giải Toán 6 Cánh diều trang 19, 20 tập 2

Câu 1

Tung một đồng xu 20 lần liên tiếp. Hãy ghi kết quả thống kê theo mẫu sau:

Lần tung Kết quả tung Số lần xuất hiện mặt N Số lần xuất hiện mặt S
1 ? ? ?
?

Tính xác suất thực nghiệm:

a) Xuất hiện mặt N;

b) Xuất hiện mặt S;

Gợi ý đáp án:

Xác suất thực nghiệm xuất hiện mặt N khi tung đồng xu 20 lần là: frac{N}{20}

Xác suất thực nghiệm xuất hiện mặt S khi tung đồng xu 20 lần là: frac{S}{20}

Câu 2

Trả lời các câu hỏi sau:

a) Nếu tung một đồng xu 22 lần liên tiếp; có 13 lần xuất hiện mặt N thì xác suất thực nghiệm xuất hiện mặt N bằng bao nhiêu?

b) Nếu tung một đồng xu 25 lần liên tiếp; có 11 lần xuất hiện mặt S thì xác suất thực nghiệm xuất hiện mặt S bằng bao nhiêu?

c) Nếu tung một đồng xu 30 lần liên tiếp; có 14 lần xuất hiện mặt N thì xác suất thực nghiệm xuất hiện mặt S bằng bao nhiêu?

Gợi ý đáp án:

a) Nếu tung một đồng xu 22 lần liên tiếp; có 13 lần xuất hiện mặt N thì xác suất thực nghiệm xuất hiện mặt N bằng: frac{13}{22}

b) Nếu tung một đồng xu 25 lần liên tiếp; có 11 lần xuất hiện mặt S thì xác suất thực nghiệm xuất hiện mặt S bằng: frac{11}{25}

c) Nếu tung một đồng xu 30 lần liên tiếp; có 14 lần xuất hiện mặt N thì xác suất thực nghiệm xuất hiện mặt S bằng: frac{30 -14}{30}= frac{8}{15}

Câu 3

Một hộp có 10 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3,…, 10; hai thẻ khác nhau thì ghi hai số khác nhau.

Rút ngẫu nhiên một chiếc thẻ từ trong hộp, ghi lại số của thẻ rút được và bỏ lại thẻ đó vào hộp. Sau 25 lần rút thẻ liên tiếp, hãy ghi kết quả thống kê theo mẫu sau:

Lần rút Kết quả rút Tổng số lần xuất hiện
Số 1 Số 2 Số 3 Số 4 Số 5 Số 6 Số 7 Số 8 Số 9 Số 10
1 ? ? ? ? ? ? ? ? ? ? ?
?

Tính xác suất thực nghiệm:

a) Xuất hiện số 1;

b) Xuất hiện số 5;

c) Xuất hiện số 10.

Gợi ý đáp án:

a) Xác suất thực nghiệm xuất hiện số 1: frac{1}{25}

b) Xác suất thực nghiệm xuất hiện số 5: frac{5}{25}

c) Xác suất thực nghiệm xuất hiện số 10: frac{10}{25}

Câu 4

Gieo một xúc xắc 10 lần liên tiếp, bạn Cường có kết quả như sau:

Lần gieo Kết quả gieo
1 Xuất hiện mặt 2 chấm
2 Xuất hiện mặt 1 chấm
3 Xuất hiện mặt 6 chấm
4 Xuất hiện mặt 4 chấm
5 Xuất hiện mặt 4 chấm
6 Xuất hiện mặt 5 chấm
7 Xuất hiện mặt 3 chấm
8 Xuất hiện mặt 5 chấm
9 Xuất hiện mặt 1 chấm
10 Xuất hiện mặt 1 chấm

a) Hãy kiểm đếm số lần xuất hiện mặt 1 chấm và số lần xuất hiện mặt 6 chấm sau 10 lần gieo. Xác suất thực nghiệm xuất hiện

b) Tính xác suất thực nghiệm xuất hiện mặt 1 chấm.

c) Tính xác suất thực nghiệm xuất hiện mặt 6 chấm.

Gợi ý đáp án:

a) Số lần xuất hiện mặt 1 chấm: 3 lần

Số lần xuất hiện mặt 6 chấm: 1 lần

b) Xác suất thực nghiệm xuất hiện mặt 1 chấm là: frac{3}{10}

c) Xác suất thực nghiệm xuất hiện mặt 6 chấm là: frac{1}{10}

Câu 5

a) Nếu gieo một xúc xắc 11 lần liên tiếp, có 5 lần xuất hiện mặt 2 chấm thì xác suất thực nghiệm xuất hiện mặt 2 chấm bằng bao nhiêu?

b) Nếu gieo một xúc xắc 14 lần liên tiếp, có 3 lần xuất hiện mặt 6 chấm thì xác suất thực nghiệm xuất hiện mặt 6 chấm bằng bao nhiêu?

Gợi ý đáp án:

a) Nếu gieo một xúc xắc 11 lần liên tiếp, có 5 lần xuất hiện mặt 2 chấm thì xác suất thực nghiệm xuất hiện mặt 2 chấm bằng: frac{5}{11}

b) Nếu gieo một xúc xắc 14 lần liên tiếp, có 3 lần xuất hiện mặt 6 chấm thì xác suất thực nghiệm xuất hiện mặt 6 chấm bằng: frac{3}{14}

Giải Toán lớp 6 Bài 4: Xác suất thực nghiệm trong một số trò chơi và thí nghiệm đơn giản Cánh diều là tài liệu vô cùng hữu ích, giúp các em học sinh lớp 6 có thêm nhiều tư liệu tham khảo, đối chiếu lời giải hay, chính xác.

Tài liệu được biên soạn chi tiết, chính xác và đầy đủ các bài tập trong sách giáo khoa Cánh diều trang 19, 20 giúp các em xem gợi ý giải các bài tập của bài 4: Xác suất thực nghiệm trong một số trò chơi và thí nghiệm đơn giản. Vậy sau đây là nội dung chi tiết tài liệu, mời các bạn cùng theo dõi tại đây.

Giải Toán 6 Cánh diều trang 19, 20 tập 2

Câu 1

Tung một đồng xu 20 lần liên tiếp. Hãy ghi kết quả thống kê theo mẫu sau:

Lần tung Kết quả tung Số lần xuất hiện mặt N Số lần xuất hiện mặt S
1 ? ? ?
?

Tính xác suất thực nghiệm:

a) Xuất hiện mặt N;

b) Xuất hiện mặt S;

Gợi ý đáp án:

Xác suất thực nghiệm xuất hiện mặt N khi tung đồng xu 20 lần là: frac{N}{20}

Xác suất thực nghiệm xuất hiện mặt S khi tung đồng xu 20 lần là: frac{S}{20}

Câu 2

Trả lời các câu hỏi sau:

a) Nếu tung một đồng xu 22 lần liên tiếp; có 13 lần xuất hiện mặt N thì xác suất thực nghiệm xuất hiện mặt N bằng bao nhiêu?

b) Nếu tung một đồng xu 25 lần liên tiếp; có 11 lần xuất hiện mặt S thì xác suất thực nghiệm xuất hiện mặt S bằng bao nhiêu?

c) Nếu tung một đồng xu 30 lần liên tiếp; có 14 lần xuất hiện mặt N thì xác suất thực nghiệm xuất hiện mặt S bằng bao nhiêu?

Gợi ý đáp án:

a) Nếu tung một đồng xu 22 lần liên tiếp; có 13 lần xuất hiện mặt N thì xác suất thực nghiệm xuất hiện mặt N bằng: frac{13}{22}

b) Nếu tung một đồng xu 25 lần liên tiếp; có 11 lần xuất hiện mặt S thì xác suất thực nghiệm xuất hiện mặt S bằng: frac{11}{25}

c) Nếu tung một đồng xu 30 lần liên tiếp; có 14 lần xuất hiện mặt N thì xác suất thực nghiệm xuất hiện mặt S bằng: frac{30 -14}{30}= frac{8}{15}

Câu 3

Một hộp có 10 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3,…, 10; hai thẻ khác nhau thì ghi hai số khác nhau.

Rút ngẫu nhiên một chiếc thẻ từ trong hộp, ghi lại số của thẻ rút được và bỏ lại thẻ đó vào hộp. Sau 25 lần rút thẻ liên tiếp, hãy ghi kết quả thống kê theo mẫu sau:

Lần rút Kết quả rút Tổng số lần xuất hiện
Số 1 Số 2 Số 3 Số 4 Số 5 Số 6 Số 7 Số 8 Số 9 Số 10
1 ? ? ? ? ? ? ? ? ? ? ?
?

Tính xác suất thực nghiệm:

a) Xuất hiện số 1;

b) Xuất hiện số 5;

c) Xuất hiện số 10.

Gợi ý đáp án:

a) Xác suất thực nghiệm xuất hiện số 1: frac{1}{25}

b) Xác suất thực nghiệm xuất hiện số 5: frac{5}{25}

c) Xác suất thực nghiệm xuất hiện số 10: frac{10}{25}

Câu 4

Gieo một xúc xắc 10 lần liên tiếp, bạn Cường có kết quả như sau:

Lần gieo Kết quả gieo
1 Xuất hiện mặt 2 chấm
2 Xuất hiện mặt 1 chấm
3 Xuất hiện mặt 6 chấm
4 Xuất hiện mặt 4 chấm
5 Xuất hiện mặt 4 chấm
6 Xuất hiện mặt 5 chấm
7 Xuất hiện mặt 3 chấm
8 Xuất hiện mặt 5 chấm
9 Xuất hiện mặt 1 chấm
10 Xuất hiện mặt 1 chấm

a) Hãy kiểm đếm số lần xuất hiện mặt 1 chấm và số lần xuất hiện mặt 6 chấm sau 10 lần gieo. Xác suất thực nghiệm xuất hiện

b) Tính xác suất thực nghiệm xuất hiện mặt 1 chấm.

c) Tính xác suất thực nghiệm xuất hiện mặt 6 chấm.

Gợi ý đáp án:

a) Số lần xuất hiện mặt 1 chấm: 3 lần

Số lần xuất hiện mặt 6 chấm: 1 lần

b) Xác suất thực nghiệm xuất hiện mặt 1 chấm là: frac{3}{10}

c) Xác suất thực nghiệm xuất hiện mặt 6 chấm là: frac{1}{10}

Câu 5

a) Nếu gieo một xúc xắc 11 lần liên tiếp, có 5 lần xuất hiện mặt 2 chấm thì xác suất thực nghiệm xuất hiện mặt 2 chấm bằng bao nhiêu?

b) Nếu gieo một xúc xắc 14 lần liên tiếp, có 3 lần xuất hiện mặt 6 chấm thì xác suất thực nghiệm xuất hiện mặt 6 chấm bằng bao nhiêu?

Gợi ý đáp án:

a) Nếu gieo một xúc xắc 11 lần liên tiếp, có 5 lần xuất hiện mặt 2 chấm thì xác suất thực nghiệm xuất hiện mặt 2 chấm bằng: frac{5}{11}

b) Nếu gieo một xúc xắc 14 lần liên tiếp, có 3 lần xuất hiện mặt 6 chấm thì xác suất thực nghiệm xuất hiện mặt 6 chấm bằng: frac{3}{14}

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Back to top button